Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Immunol ; 13: 954801, 2022.
Article in English | MEDLINE | ID: covidwho-2315271

ABSTRACT

SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR < 0.05, absolute log2 fold change greater than 0.25, and VIP >1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What's more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.


Subject(s)
COVID-19 , Viral Vaccines , Biomarkers , COVID-19/prevention & control , COVID-19 Vaccines , Cytokines , Glutamic Acid , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Indoles , Metabolomics , SARS-CoV-2 , Succinic Acid , Taurine , Vaccination , gamma-Aminobutyric Acid
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057914

ABSTRACT

SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR < 0.05, absolute log2 fold change greater than 0.25, and VIP >1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What’s more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.

3.
Zool Res ; 42(3): 335-338, 2021 May 18.
Article in English | MEDLINE | ID: covidwho-1231642

ABSTRACT

The global outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as of 8 May 2021, has surpassed 150 700 000 infections and 3 279 000 deaths worldwide. Evidence indicates that SARS-CoV-2 RNA can be detected on particulate matter (PM), and COVID-19 cases are correlated with levels of air pollutants. However, the mechanisms of PM involvement in the spread of SARS-CoV-2 remain poorly understood. Here, we found that PM exposure increased the expression level of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in several epithelial cells and increased the adsorption of the SARS-CoV-2 spike protein. Instillation of PM in a hACE2 mouse model significantly increased the expression of ACE2 and Tmprss2 and viral replication in the lungs. Furthermore, PM exacerbated the pulmonary lesions caused by SARS-CoV-2 infection in the hACE2 mice. In conclusion, our study demonstrated that PM is an epidemiological factor of COVID-19, emphasizing the necessity of wearing anti-PM masks to cope with this global pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/chemically induced , COVID-19/immunology , Particulate Matter/adverse effects , SARS-CoV-2 , Adsorption/drug effects , Animals , Disease Susceptibility/chemically induced , Disease Susceptibility/immunology , Epithelial Cells/metabolism , Mice , Mice, Inbred Strains , Particulate Matter/chemistry , RNA, Viral/analysis , SARS-CoV-2/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL